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Recent studies confirm that dietary methionine restriction increases both mean and maximal lifespan in
rats and mice, achieving ‘‘aging retardant” effects very similar to those of caloric restriction, including a
suppression of mitochondrial superoxide generation. Although voluntary caloric restriction is never likely
to gain much popularity as a pro-longevity strategy for humans, it may be more feasible to achieve mod-
erate methionine restriction, in light of the fact that vegan diets tend to be relatively low in this amino
acid. Plant proteins – especially those derived from legumes or nuts – tend to be lower in methionine
than animal proteins. Furthermore, the total protein content of vegan diets, as a function of calorie con-
tent, tends to be lower than that of omnivore diets, and plant protein has somewhat lower bioavailability
than animal protein. Whole-food vegan diets that moderate bean and soy intake, while including ample
amounts of fruit and wine or beer, can be quite low in methionine, while supplying abundant nutrition
for health (assuming concurrent B12 supplementation). Furthermore, low-fat vegan diets, coupled with
exercise training, can be expected to promote longevity by decreasing systemic levels of insulin and free
IGF-I; the latter effect would be amplified by methionine restriction – though it is not clear whether IGF-I
down-regulation is the sole basis for the impact of low-methionine diets on longevity in rodents.

� 2008 Elsevier Ltd. All rights reserved.
Low-fat vegan diets may slow human aging

It has been suggested that long-term consumption of a low-fat,
whole-food vegan diet, accompanied by regular aerobic exercise
training, may at least modestly increase maximal lifespan in hu-
mans by down-regulating plasma levels of insulin and free IGF-I
[1]. Down-regulation of insulin/IGF-I signaling in Caenorhabditis
elegans, Drosophila, and rodents has been found to increase max-
imal and mean lifespan while slowing key aspects of the aging pro-
cess; the well documented utility of caloric restriction in this
regard is believed to be mediated, at least in part, by down-regula-
tion of such signaling [2–6]. Treatment of various cell lines with
serum obtained from calorically-restricted rats or monkeys results
in decreased proliferation and increased tolerance to oxidants and
heat, relative to cells grown with serum from ad-lib-fed animals;
addition of insulin and IGF-I to the calorically-restricted serum lar-
gely reverses these effects [7]. Low-fat vegan diets, complemented
by exercise, tend to promote leanness and muscle insulin sensitiv-
ity; the resulting down-regulation of insulin secretion can be ex-
pected to diminish hepatic production of IGF-I while increasing
production of its functional antagonist IGFBP-1 [1,8,9]. Moreover,
the relatively low content of certain essential amino acids in many
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ty).

MF et al., The low-methioni
08.07.044
vegan diets has the potential to decrease IGF-I synthesis [10–13].
In cross-sectional studies, vegans do indeed tend to have lower
plasma IGF-I levels than omnivores or ovo-lacto-vegetarians [14–
16]. Barnard has demonstrated that the Pritikin regimen – consist-
ing of a very-low-fat, whole food quasi-vegan diet complemented
by ample walking exercise – achieves a rapid down-regulation of
plasma levels of insulin and free IGF-I [17–19].

In light of recent evidence, there may be an additional respect in
which vegan diets can promote increased maximal lifespan – as
contrasted to diets that incorporate animal products, vegan diets
tend to be low in methionine (Met).
Methionine restriction boosts longevity in rodents

Over a decade ago, Orentreich and colleagues reported that die-
tary methionine restriction – cutting the Met content of rodent diets
by 80% from 0.86% to 0.17% – was associated with a greater than 40%
increase in both mean and maximal lifespan in Fischer 344 rats
[20,21]. Importantly, the animals had ad libitum access to these
diets – they were allowed to eat as much as they wished to achieve
satiety. To rule out the possibility that this response reflected
impact on a pathology to which this strain of rats is unusually prone,
rather than an impact on aging per se (kidney failure, which often
can be slowed by protein restriction, is a common cause of mortality
in Fischer 344 rats [22]), these researchers have more recently
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Table 1
Methionine contents of common foods

% Met in protein mg Met/kcal

Plant origin
Wheat (bulgur) 1.55 0.57
Oatmeal 1.87 0.77
Brown rice 2.26 0.52
Corn 2.11 0.64
Soy (tofu) 1.28 1.36
Potato 1.61 0.42
Pinto beans 1.51 0.90
Black beans 1.51 1.01
Lentils 0.85 0.66
Peanuts 1.23 0.49
Almonds 1.15 0.32

Animal origin
Chicken breast w/o skin 2.77 4.94
Beef, lean ground 2.34 2.05
Tuna 2.96 6.48
Milk, low-fat 2.51 1.97
Eggs 3.11 2.54
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tested Met restriction in three other rat strains – Brown Norway,
Sprague Dawley, and Wistar Hannover [23]. Although, at time of
publication, the studies had not yet progressed far enough to calcu-
late maximal lifespans, the mean lifespans of the restricted rats had
clearly been markedly enhanced, and survival curves were quite
comparable to those seen with Fischer 344 rats. Meanwhile, other
researchers have reported that a Met-restricted diet can increase
maximal lifespan in mice [24]. As anticipated, the Met-restricted
mice showed lower serum levels of IGF-I, insulin, glucose, and thy-
roid hormones. The onset of certain markers of aging – lens turbidity
and alterations in T cell subsets – was delayed in the restricted mice,
who were also noted to have greater resistance to hepatic oxidant
stress induced by acetaminophen.

Although ad-lib-fed Met-restricted rats consume fewer calories
per day than rats fed control diets, this reflects the fact that they
grow slower and achieve a smaller adult size; their calorie con-
sumption adjusted for body mass tends to be slightly greater than
than of normally fed rats. Moreover, rats that are pair-fed with
Met-restricted rats (but receiving normal chow) do not achieve
an increase in longevity [23]. Thus, decreased caloric consumption
does not account for the longevity effect of Met restriction.

No doubt, a portion of the impact of Met restriction on maximal
longevity is mediated by down-regulation of hepatic IGF-I produc-
tion. A relative dietary deficiency of any single essential amino acid
has this impact in rodents [10–13]. In particular, one study reported
that an 80% reduction in dietary Met content was associated with a
42% decrease in plasma IGF-I, as well as a doubling of plasma IGFBP-
1 (a functional antagonist of IGF-I) in Wistar rats [13]. However, it is
by no means certain that this is the only mechanism at play here,
since, aside from its role in supporting protein synthesis and main-
taining IGF-1 production – capacities shared by all essential amino
acids – Met has a number of additional biological roles; it functions
as a methyl donor (via its derivative S-adenosylmethionine), and as
a precursor for taurine, polyamines, glutathione, and sulfate. (While
cysteine can support synthesis of taurine, glutathione, and sulfate,
it should be noted that the semi-purified diets used in Met-restric-
tion protocols have not included cysteine or most other non-essen-
tial amino acids.) Whether restriction of essential amino acids other
than Met might achieve a comparable impact on rodent longevity is
not clear; while tryptophan restriction can indeed increase maxi-
mal lifespan in mice, it also increases mortality early in life, and thus
is of little interest from a clinical standpoint [25].

Intriguingly, Pamplona and Barja report that long-term Met
restriction reduces ex vivo superoxide production by complex I of
the mitochondrial respiratory chain, while maintaining efficient
state 3 and state 4 respiration; this effect is not seen in the pres-
ence of rotenone, suggesting that decreased reduction of the com-
plex I superoxide generator accounted for this effect of Met
restriction [26]. They have reported a similar effect for long-term
restriction of calories or total protein [26–30]. This effect likely
was not mediated solely by IGF-I or insulin down-regulation, since
insulin or growth hormone treatment of calorically-restricted mice
did not reverse the favorable effect of such restriction on hepatic
mitochondrial superoxide production [31]. These favorable effects
of calorie, protein, or Met restriction on mitochondrial oxidant
stress were associated with a reduction in oxidative damage to
mitochondrial DNA and proteins.

There is increasing evidence that the cumulative impact of
mitochondrial oxidant stress on the structure and function of mito-
chondria may play a key role in the aging process, and that pro-
gressive mutation or deletion of mitochondrial DNA contributes
importantly to aging [32]. Thus, knock-in mice expressing a
‘‘sloppy” mutant form of a mitochondrial DNA polymerase prone
to proof-reading errors, experience decreased lifespan and signs
of accelerated aging [33]. Conversely, mice overexpressing a form
of catalase targeted to mitochondria enjoy an increase in median
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and maximal lifespans [34]. The ability of Met restriction to mini-
mize respiratory electron leak may thus contribute importantly to
its impact on longevity.

In light of the prominent antioxidant role of the intracellular re-
duced glutathione pool, and the fact that Met functions as a gluta-
thione precursor, the impact of Met restriction on glutathione
metabolism has been studied in rats. Surprisingly, although Met
restriction decreased glutathione levels in liver and kidney, it did
not have this effect on other tissues examined – and plasma gluta-
thione levels were actually higher than in control rats [21]! This
suggests that, as an adaptive response to Met deficiency, hepatic
capacity to synthesize and export glutathione is up-regulated. Fur-
thermore, despite the decrease in the hepatic glutathione pool, Met
restriction in mice was associated with increased resistance to he-
patic oxidant stress [35].

Of related interest is the intriguing observation that the fraction
of Met found in the heart proteins of a species tends to correlate
inversely with longevity [36]. This might reflect the fact that oxida-
tion of protein-bound Met is one of the prominent ways in which
oxidant stress can disrupt protein function [37]. Indeed, genetically
altered mice deficient in the enzyme that repairs methionine sulf-
oxide residues have a decreased lifespan [38,39] – whereas, in Dro-
sophila, increased expression of this enzyme prolongs survival
[40]. It should be noted, however, that this phenomenon is not
likely to contribute to the impact of Met restriction on longevity,
since such restriction would not be expected to influence the rela-
tive expression of Met in tissue proteins.

Vegan diets can be low in methionine

Voluntary caloric restriction, while it may be feasible for some
ascetic individuals [41] is unlikely to represent a truly practical
technique for life prolongation in humans. Animals subjected to
involuntary caloric restriction show signs of ravenous hunger, vir-
tually attacking the food that is presented to them; and the high
long-term failure rate of calorie-restricted dieting for weight loss
in humans is well known. However, it is inherently easier to con-
trol intakes of protein and, in particular, methionine, owing to
the fact that many vegan diets are relatively poor sources of methi-
onine. This reflects three phenomena: First, the Met contents of
plant proteins tend to be lower than those of animal proteins. Table
1 (calculated from data provided in Ref. [42]) reveals that the Met
fraction in representative plant proteins ranges from 0.85% to
2.26%, whereas that of animal proteins falls into the range 2.34–
3.11%. The fraction of methionine in legume protein (including
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soy) and nut protein is especially low. Secondly, the protein con-
tent of plant-derived foods, as a fraction of total calories, tends to
be lower than that of animal-derived foods. Only soy products have
a protein fraction comparable to that of some animal-derived
foods – and soy protein is noted for its low-Met content! As a
result, as indicated in Table 1, the Met content expressed as mg
Met/kcal tends to be far lower in plant foods than in animal
products. And finally, plant proteins tends to be digested less
efficiently than animal proteins; animal protein is usually at least
90% available, whereas plant protein may be only about 80%
available [43,44]. Thus, the disparities in bioavailable Met content
between plant and animal products are actually understated by
Table 1.

An additional factor may also be at work. Plant proteins tend to
be relatively rich in glycine [45], which can acts as a functional Met
antagonist by serving as a methyl group acceptor in a reaction cat-
alyzed by glycine N-methlytransferase; this enzyme transfers a
methyl group from S-adenosylmethionine to the amine group of
glycine [46]. In rodents, a high-Met diet tends to elevate circulating
cholesterol levels; this effect is antagonized by a concurrent high
intake of glycine [47]. Indeed, the Met/glycine ratio of the diet is
a determinant of plasma cholesterol in rodents [47,48].

Induction and spread of cancers in rats can be suppressed by
feeding them a semi-purified diet in which soy protein is the sole
protein source; this benefit is eliminated if extra Met is added to
the soy-based diet [49]. As is well known, caloric restriction like-
wise retards cancer development in rodents. Down-regulation of
systemic IGF-I activity is likely to play a role in both of these phe-
nomena [50,51].

Vegans can keep their Met intakes relatively low by moderating
their intakes of soy products and legumes, while diluting their total
protein intake by ingesting ample amounts of fruit, wine, and/or
beer. (Note however the comparatively low-Met density of
lentils – on a mg per kcal basis, marginally higher than that of wheat
or brown rice – and lower than that of oatmeal!) Protein dilution
could also be achieved by including more plant oils in the diet;
whether this would be advisable may hinge on the long-term
impact of increased oil intake on insulin sensitivity. Very-low-fat
diets coupled with exercise training can have a rapid insulin-
sensitizing impact and in the longer term promote leanness
[52–54] – effects that down-regulate insulin secretion, which
should be favorable from a longevity standpoint [1]. However, it is
conceivable that some lean, well-exercised individuals could
increase their dietary intake of unsaturated oils without notably
impairing their insulin sensitivity or leanness – studies have not
yet assessed the impact of dietary fat modulation within the context
of a vegan diet and regular exercise.

Theoretically, effective Met availability might be further re-
duced by ingesting supplemental glycine, which is inexpensive,
delicious, and has anti-inflammatory effects which are potentially
protective [55]. However, since dietary Met has an inductive im-
pact on expression of glycine N-methyltransferase [56,57], dietary
glycine may be less effective as a functional Met antagonist in the
context of a low-Met diet.

Whether a feasible strategy of Met restriction, implemented
consistently over most of a lifetime, could have a sufficient impact
on Met availability to achieve a meaningful delay in the human
aging process, remains a matter of speculation. To date, we still
await confirmation that caloric restriction can increase maximal
lifespan in primates to a worthwhile extent. Perhaps one way to
assess the likely impact of a Met-restricted diet on human longev-
ity would be to examine the long-term impact of such a diet on
oxidation of mitochondrial DNA in leukocytes – though whether
Met restriction influences this particular parameter in rodents is
not yet known, as the relevant studies have targeted mitochondria
obtained from liver or heart.
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In any case, regular consumption of a low-fat, whole-food vegan
diet, coupled with exercise training, is likely to have a favorable
impact on mean longevity by reducing risk for cancers, coronary
disease, and diabetes [45,58–60]. However, low systemic IGF-I
activity seems likely to increase risk for hemorrhagic stroke, and
possibly ischemic stroke as well, and is associated with poor prog-
nosis following an ischemic stroke [61–65]. Furthermore, in Asian
cultures, increasing intakes of animal products and total protein
have been associated with declining stroke risk [66–70]. Since
stroke is an uncommon cause of death in most strains of rodents,
calorie/protein restriction studies in rodents can cast little light
on the impact of such measures on stroke risk in humans. Vegans
would thus be well advised to keep their blood pressures in the
low-normal range throughout life, by employing a potassium-rich,
low-salt diet, exercising, and staying lean [61].

Met plays a role in the endogenous synthesis of various ‘‘carni-
nutrients”, including L-carnitine, creatine, and taurine, that are
not supplied by vegan diets, and that may play important roles in
health promotion [71]. Thus, supplementation with these agents
may be warranted in vegans practicing a Met-restricted diet.
Furthermore, since selenium occurs naturally in foods primarily
as protein-bound selenomethionine – substituted for Met in pro-
teins – it follows that a low-Met diet is prone to be a low-selenium
diet; selenium supplementation may be prudent for vegans who are
trying to keep their Met intakes low [72]. Unsupplemented vegan
diets are devoid of vitamin D, so vegans who lack access to year-
round uv light should be sure to include this in their supplementa-
tion regimens [73]. And it should go without saying that
supplementation with vitamin B12 is mandatory for vegans [74].
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